Category Archives: Conservation

What future for wild sea bass?

There are many things that can cause problems for a species. Sometimes it’s some aspect of the biology that makes them vulnerable. Sometimes it’s human pressures. And sometimes it all comes together to really cause problems for an animal. Sea bass are a popular fish for commercial fishermen and anglers, and are a popular fish for eating. Despite the fact that most of the sea bass consumed in the EU is farmed wild sea bass populations are in trouble. While assessments of the stock are not easy, ICES, the intergovernmental organisation that gives advice on sustainable fishing to the EU has said that the losses from the population due to fishing have consistently been above sustainable levels1 and also recruitment of young fish has been very poor since 20081.

Swimming Sea Bass
Sea Bass by Bjoertvedt is licensed under creative commons (CC-BY-SA 4.0)

Sea bass grow slowly and mature relatively late. They mature between four and seven years old when the males are around 35 cm long and the females are around 42 cm2. Before the 1st September 2015 the minimum size for landing was 36cm nationally2, although some regions such as Cornwall had a slightly larger size3. Not surprisingly, having a minimum size where the female fish could be landed before they had had a chance to breed is not the best route to a sustainable fishery. Sea bass behaviour also increases their vulnerability to over-exploitation. The juveniles congregate in groups in estuaries, and as adults migrate offshore to spawn (where they are targeted by trawlers4) and then return to the same coastal sites year after year5. This site fidelity means that once local populations are overfished recovery is slow, especially if there are cold winters that can kill juveniles, reducing the number of new individuals recruited to the population5. All these factors mean that the breeding population has dropped from around 16,000 tonnes in 2009 to less than 7,000 tonnes in 2015. ICES state that the ability of the population to reproduce successfully is seriously compromised below 5,000 tonnes.

So what has been the response? The minimum landing size has been increased to 42cm6 and is now called the minimum conservation reference size, which at least gives the females a chance to breed but comes at a cost for the fishermen. The fish that are above 35cm now and could have been caught under the old rules are now not available to be caught until they grow large enough to exceed the new minimum. There is also to be a closed season for six months of the year between January and June to allow the fish to spawn. For the other six months of the year recreational anglers will be allowed to land one bass per day, while commercial fishers are restricted to catch limits of one tonne per month. The EU proposes that catch limits should fall from 2,656 tonnes in 2015 to 1,449 tonnes in 2016, a reduction of around 45%7. The problem is, though, that ICES has said that the limit should be set at 541 tonnes for 20168, which would be a reduction of 80% on the 2015 figures. In other words, the limit set by the EU is nearly three times larger than what the scientific assessment says it should be. This may be an attempt to spread the impact on fishermen over a longer period, but with the stock at such a low level this may backfire. A collapsed fishery supports no one.

What else could be done? Save Our Sea Bass suggest that the lower landings limit (the ICES figure) should be adopted as a matter of urgency, and that both anglers and commercial fishermen should only be allowed to catch sea bass by rod and line or hand lines. They also suggest that the share in the 541 tonnes should be distributed in line with article 17 of the common fisheries policy, which means based on environmental criteria and economic benefits to coastal communities. The idea behind using lines to catch sea bass is that line-caught sea bass fetches higher prices. The marine conservation society has a good fish guide, and currently (November 2015) lists wild-caught sea bass as a fish to avoid. Farmed sea bass are a more acceptable alternative to wild-caught fish.

You can keep up to date with sea bass issues either from the Marine Conservation Society or Save Our Sea Bass site.

References

1,8 ICES Advice on fishing opportunities, catch, and effort Celtic Seas and Greater North Sea Ecoregions 2015
2 European sea bass (Dicentrarchus labrax) exploited around Welsh waters – preliminary results: December 2013.
3Cornwall Inshore Fishery and Conservation Association new minimum size for bass
4Protecting Sea Bass
5Parliamentary briefing on sea bass.
6Bass fishing: catch limits, minimum size, and where you can fish (Gov.uk)
7Commission proposes fishing opportunities in the Atlantic and North Sea for 2016

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

No limits, no future

Recently, I volunteered with the Shark’s Trust at the Dive Show in Birmingham helping to raise awareness about their ‘no limits no future‘ campaign to stop uncontrolled shark fishing. Shark and ray populations worldwide are under increasing pressure, and the total number of sharks caught annually may be over 100 million. One study1 published earlier this year (2014) estimated that up to a quarter of shark and ray species are threatened if assessed using the IUCN red list criteria. If we think about risks to shark populations we might think about shark finning in the Pacific, or sharks being caught as part of longline fisheries for tuna2 but the problem is actually a lot closer to home.

Originally, sharks were an unwanted part of the catch (bycatch) as fishermen pursued species such as cod and tuna, but now there is an increasing trend for the targeting and retention of these bycatch sharks. They are caught for their meat, their fins and their liver oil. Unfortunately, the life-history and behaviour of sharks makes them vulnerable to overfishing and populations are declining. Sharks reach maturity late and have relatively few young compared to other fish. In addition, they often congregate in groups of individuals that are either all a single sex, or are very close in age. Should a fisherman catch these sharks it has a bigger effect than catching the same number of sharks at random from the population.

In 2012 there were 280,000 tonnes of reported shark landings worldwide, with EU vessels landing 40% of this world total, the majority of which came from the Atlantic ocean and Mediterranean sea. One issue in that this is reported landings – the true level of landings is thought to be three to four times higher3. Worse still, most of this European catch from the Atlantic and Mediterranean is concentrated on just five species4.

These five species are:

97% of all sharks caught and landed from the Atlantic and Mediterranean in 2012 are no limits species, which has been estimated to amount to 6,400,000 individuals. This is why although some of the species above are currently listed as of ‘least concern’ it’s important to make the fisheries sustainable before the populations crash due to overfishing. Once overfished, there is no guarantee that populations will recover as demonstrated by the collapse of the cod fishery on the grand banks off the eastern coast of Canada. In addition, sharks are important components of ecosystems as top-level predators. The shark trust is campaigning for science-based catch limits. Please sign the petition, and see the ‘get involved‘ page for other ways to contribute.

References

1http://elifesciences.org/content/3/e00590
2http://www.sciencedirect.com/science/article/pii/S2351989414000055
3 4http://www.nolimitsnofuture.org/wp-content/uploads/2014/07/no_limits.pdf

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Upper Fowey MCZ – what’s there and local opinion

While I was down in Cornwall for the seasearch fish ID course, I went to a public meeting at the Royal Fowey Yacht Club that had been arranged to discuss management of the Upper Fowey and Pont Pill MCZ.

Sailing Boats in Fowey Harbour
Sailing Boats in Fowey Harbour.
CC BY-SA Duncan Greenhill

First of all, a little background. Upper Fowey and Pont Mill MCZ is an unusual marine conservation zone. It’s the second smallest, at around two square kilometres, and despite its small size it’s split into two separate areas. The main part of the MCZ is the upper Fowey estuary and the second area is Pont Pill, which is a smaller estuary that joins the main estuary from the east a short distance inside the entrance to the open sea.

MCZs are designated based on the features (habitats or species) within them. For this particular MCZ, there are six features listed in the designation, and all are habitats. The European eel (Anguilla anguilla) was included in the draft conservation objectives and there was a single record of a long-snouted seahorse (Hippocampus guttaluatus) recorded in the area covered by the MCZ, but the record dated back to the 1960s. Neither of these species were used as a basis for designation. There are areas of seagrass in the estuary but not within the boundaries of the Upper Fowey MCZ, which followed those of the voluntary marine conservation area (vMCA) that was there previously. It may be that there are species and habitats of conservation interest within the estuary, but not within the MCZ and so not currently protected. The six habitats are:

  • Coastal salt marshes and saline reedbeds, which are important habitats for birds and fish, producing a biodiversity ‘hotspot’, as well as providing natural coastal protection. This type of habitat is relatively rare in the south west.
  • Intertidal coarse sediment consists of pebbles, gravels and coarse sand, and is only found at a few scattered sites in the UK. The unstable nature of the sediment means that few animals can live here successfully, with sandhoppers being one of the exceptions.
  • Intertidal mud is what we normally think of when we think of estuaries – the typical mudflat that supports large populations of worms and bivalves.
  • Low energy intertidal rock are areas that are sheltered from wave action and subject to weak tidal currents, which means that seaweeds can flourish, providing shelter and protection and acting as nursery grounds for juvenile fish.
  • The fifth type of habitat is estuarine rocky habitat. Stable rock is rare within estuaries (because muds tend to dominate) and the rocky shore communities can differ quite substantially from those of normal coastlines because of the brackish water and sediment inflow from the rivers.
  • The final type of habitat is sheltered muddy gravels. These are found in areas that are not exposed to strong tidal streams or strong wave action, and the communities of animals found within them depends on the salinity. Fully marine examples of these habitats are scarce in the UK, but are found in both the areas that make up this MCZ. This habitat is important for diversity and is rich in species such as tubeworms, burrowing anemones and bivalves.

The last two habitats are the most important, and are listed as features of conservation importance (FOCI) for this site, which means that they are “rare, threatened or declining“.

Rob Seebold, who’s a marine adviser with Natural England and Sam Davies from Cornwall IFCA ran the meeting. Rob started with a presentation about MCZs highlighting that the aim for MCZs was to make the marine environment more resilient to change. Those involved in conservation often talk about ‘ecosystem goods and services’, for example, coastal areas provide us with ‘goods’ (fish and shellfish), but also services (intertidal mud protects against erosion by dispersing the energy of waves and currents). It’s the protection and sustainable use of these goods and services that enhances the resilience of the particular marine ecosystem.

There was some concern expressed by some in the audience that they would be prevented from pursuing activities they had always done because they area now had a level of legal protection that it had not had before, and whether people coming in from outside the area would ‘play by the rules’. While Rob couldn’t rule out any changes in future he did point out that the features in the MCZ were generally in good condition. The MCZ is regulated by a number of organisations, including IFCA, the Marine Management Organisation, Cornwall Council, the Environment Agency and the Fowey harbour commissioners. The next steps are that the regulators will look at whether further management is necessary and involve local stakeholders if that’s the case, but with the aim of managing features to a ‘favourable condition’ rather than extending the scope of protection. The regulators are also required to report on the status of the sites to DEFRA every six years.

Some of the concern at the meeting related to fishing issues, rather than the conservation zone itself, and Sam Davies from Cornwall IFCA responded to these as part of her presentation. An interesting point related to the bass fishery where the minimum size for landing in the Cornish area is 37.5cm (36cm in the EU), but as a member of the audience pointed out this is below the size at which they reproduce, and that locals were actually pushing for the limit to be raised to 45cm. IFCAs can set minimum sizes within their own areas so long as they are not below the statutory minimum.

It was my first time at a public meeting like this, and I was impressed. The concerns expressed were reasonable and entirely understandable in the local context, and I didn’t hear a single negative comment about marine conservation zones. And that’s important because protection doesn’t succeed through legislation, but because people protect what they value and connect with.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

It’s a fish – day two

Day two of the seasearch course started relatively early (for a Sunday). We met at Towan headland in Newquay by the old lifeboat station, and the car park started to fill with divers in various states of getting ready. Most of the course participants were diving, but three of us (including me) were snorkelling. We accessed the water down a natural rock ramp, which was much less steep than the old lifeboat slipway, and entered the water at 9.30, around two hours after local high water. As I was only wearing a summer 3mm wetsuit the cold shock was a little bracing and left me hyperventilating for a good twenty seconds, as well as giving me the start of a wonderful ‘ice-cream’ headache. Visibility was around 5m as we began to snorkel. We remained on the surface so as not to interfere with the divers surveying below us, which restricted us to observing what was in the water column or on the shallower rocks, and consequently saw mostly sand eels and spider crabs. We were joined by a female grey seal who kept us company for a while before disappearing to visit the divers. As we swam back to the exit point I could see the silhouette of the seal below me, just at the limit of visibility.

Grey Seal
Grey Seal (Halichoerus grypus). CC BY-SA Duncan Greenhill

After coffee and biscuits, we moved across to the other side of Fistral beach as the tide continued to fall to meet Frances and the other participants for the rockpooling session. This was more productive for me personally, catching a large Shanny (Lipophrys pholis, and thanks to Fiona for spotting it), and later a long-spined Sea Scorpion (Taurulus bubalis). The Sea Scorpion was a complete surprise as I ran my hands through the unlikeliest looking crevice in the rock behind where we’d left our bags and found quite a sizeable fish at about 15cm long.

Shanny (Lipophyrys pholis)
Shanny (Lipophyrys pholis). CC BY-SA Duncan Greenhill
Long Spined Sea Scorpion
Long-spined Sea Scorpion (Taurulus bubalis). CC BY-SA Duncan Greenhill

As the tide started to come in we used a seine net to sample over the sand in the surf. It was hard work, and involved coordination so that the top and bottom ropes were hauled in at similar rates, and that the bottom rope was kept low to avoid all the specimens escaping underneath. We found a prawns and shrimps, a juvenile flatfish, and a number of Lesser Weaverfish (Echiichtyhys vipera), which questioned the wisdom of so many swimmers going into the water barefoot. The day ended with pasties on the beach.

Overall, it was a great weekend. I learned a lot, in good company, and hope to return next year to do the seasearch observer course.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Protected seas? It’s a long story

One thing you realise when you start looking at marine protected areas in the UK is that it’s complicated. Various acronyms crop up and are sometimes (and incorrectly) used interchangeably, and working out who’s responsible for which patch of sea can be difficult. So what types of MPAs are there in the UK, who is responsible for them, and what bits of legislation make them possible and protect them?

Dyfi Estuary. Photo credit: Nigel Callaghan
Dyfi Estuary at low tide, looking east.
Photo credit: copyright Nigel Callaghan, CC BY SA.

There are five elements to MPAs in the UK. These are SACs, SPAs, SSSIs, MCZs and RAMSAR sites. SACs [1, 2] are Special Areas of Conservation, and SPAs [3, 4] are Special Protection Areas. SACs and SPAs have their origins in the Berne Convention, which came into force in 1982 and covers the conservation of natural habitats and endangered species in Europe. The convention also covers migratory species so some countries in Africa and South America have also signed the convention. Ten years later the European Union passed two directives to implement the convention: the habitats directive, which gives rise to SACs, and the birds directive, which gives rise to SPAs.

The main aim of SACs is to protect habitats. Which habitats? Well, any habitats listed in annex I and those with any species listed in annex II mean that a SAC will need to be designated. What this means is that even within the area of an SAC, the majority of species will not be explicitly protected. However, other protection is normally also used, and SACs (and SPAs) are usually given SSSI status when they are created as well. The main aim of SPAs is to protect birds and their habitats, and again this applies to particular species listed in an annex. Taken together, SACs and SPAs form a network of protected areas across Europe called the Natura 2000 [5, 6] network. Natura 2000 sites that have a marine component are sometimes called European Marine Sites.

SSSIs are Special Sites of Scientific Interest, the majority of which are on land. Some SSSIs cover intertidal areas and some include areas that are permanently covered by seawater. They have a long history, with the first being created from legislation passed in 1949 [7]. The main piece of modern legislation that protects them is the Wildlife and Countryside Act 1981 [8, 9], with further protection being provided through the Countryside and Rights of Way Act 2000. SSSIs are designated by different organisations in different areas of the UK. These are Natural England, Natural Resources Wales (which was previously the Countryside Council for Wales until April 2013), Scottish Natural Heritage, and the DoENI (Department of the Environment Northern Ireland). SSSIs are the basis of much of the other forms of protection in the UK and most other designations are based around existing SSSIs. The sites are inspected every seven years.

MCZs are a relatively new form of protected area, and were made possible by a range of legislation. Each area of the UK has responsibility for its own territorial waters out to 12 miles from the coast. The Marine and Coastal Access Act 2009 [10, 11] covered the English and Welsh territorial waters, and UK offshore areas (out to the limits of the continental shelf). An exception to this is Scotland, which passed its own marine act in 2010 [12, 13], and retains responsibility for both territorial and offshore waters in its area. Confusingly, what would be an MCZ in any other area of the UK is called an MPA in Scotland. Northern Ireland passed its marine act in 2013 [14] and is responsible for its own territorial waters.

RAMSAR sites, like SSSIs, also have a long history. The RAMSAR convention is an international treaty created in 1971 to protect wetland sites of international importance. The first UK RAMSAR sites were created in 1976 [15].

At first glance, it seems that the seas around the UK are well protected. As we’ll see in later posts, that’s not quite the whole story.

Footnotes

1SACs with a marine component (JNCC)
2SACs (Natural England)
3SPAs with a marine component (JNCC)
4SPAs (Natural England)
5Natura 2000 (EU Commission)
6Natura 2000 (Natural England)
7NE306 Sites of Special Scientific Interest (Natural England)
8Wildlife and Countryside Act 1981 (JNCC)
9Wildlife and Countryside Act 1981 (Wikipedia)
10Marine and Coastal Access Act 2009 (JNCC)
11Marine and Coastal Access Act 2009 (Wikipedia)
12Marine (Scotland) Act 2010 (Scottish Government)
13Marine (Scotland) Act 2010 (Wikipedia)
14Marine Act Northern Ireland (DoENI)
15RAMSAR sites (JNCC)

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Lundy – An island of firsts

As this is the first post, I thought I’d look at another first of the marine enviroment, at least here in the UK: Lundy island. It was the first Marine Nature Reserve (MNR), the site of the first no-take zone, and the first Marine Conservation Zone (MCZ).

The island sits in the Bristol Channel about 19 kilometres off the Devon coast. It’s around five kilometres long and just over one kilometre wide, and runs roughly north-south. The importance of the island’s natural history, both above and below the water, has been recognised for a long time. The seas around the island became a voluntary marine nature reserve in 1971 and the entire island itself was listed as a Site of Special Scientific Interest (SSSI) in 1976.

Grey Seal. Photo credit: Andreas Trepte
Grey Seal. Photo credit: Andreas Trepte

The voluntary MNR was, as it name suggests, voluntary, but as time has progressed, the protection for Lundy has increased. A key point came in 1981 when the Wildlife and Countryside Act became law because it allowed marine nature reserves to be established with legal protection in much the same way that nature reserves on land could be protected. The marine nature reserve gained its statutory (legal) protection in 1986.

Lundy is also unusual in having a no-take zone off the eastern coast of the island where all forms of fishing are banned. This protects habitats and animals (such as the pink sea fan) from damage by fishing gear, and allows populations to build up and then spill out into surrounding areas. The NTZ was set up in 2003 and is legally enforceable under a fisheries bye-law, and a survey programme was undertaken to monitor the effects. By 2007, the number of lobsters above the minimum size that could be landed had increased by over 400%[1], despite the fact that the NTZ is relatively small at around 3.3 km2[2] compared to over 30 square kilometres covered by the MNR).

The area got another layer of protection in 2005 when the area covered by the MNR was designated as a Special Area of Conservation (SAC). SACs are designed to protect certain habitats and particular species, and in the case of Lundy the habitats selected for protection were most importantly the reefs, and to a lesser extent the submerged and partially submerged sea caves, and sandbanks that are partially covered by seawater[3]. Lundy is a breeding site for the grey seal (Halichoerus grypus), the largest sea in UK waters and globally rare, and some seals pup in sea caves in the intertidal zone.

Finally, in January 2010, the seas surrounding Lundy (and other existing MNRs such as Skomer) became Marine Conservation Zones (MCZs), and are meant to be the first of a network of MCZs in the UK, although controversially, only 27 of 127 potential sites received approval in the first round of designations[4].

Lundy is an island geologically as well as literally. It’s not only an island of land but also an island of hard surfaces in a sea of surrounding soft sediments. It’s mostly composed of granite, with some slate at the southern end and below the water the reefs extend offshore (for a kilometre on the western side) before dropping to relatively deep water (30 to 40 metres) and softer sediments. The tidal currents in and out of the Bristol Channel are strong and the tidal range can be up to nine metres. The tidal regime and the complex rocky environment gives rise to a mosaic of different habitats. The underwater cliffs and overhangs are home to a variety of marine invertebrates, including all five British species of cup corals[5]. Filter feeders like anemones, corals, bryzoans and sea squirts thrive here. The seas off Lundy island are outstanding in conservation terms and the island fully deserves its list of firsts.

Footnotes

1http://www.lundymcz.org.uk/docs/public/CMER_Lundy%20NTZ_First%205%20Years.pdf
2http://www.lundymcz.org.uk/conserve/ntz
3,5http://jncc.defra.gov.uk/ProtectedSites/SACselection/sac.asp?EUCode=UK0013114
4http://www.bbc.co.uk/news/science-environment-25032255

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.